

Summary

Space Biology 2002-2007

- Survey the genomics, proteomics, physiology, and structure of model organisms that pioneered the Human Genome Project.
 - Begin with easy to handle organisms -- cells, microbes, nematodes, arabidopsis.
 - Build to mammalian species as resources mature.
 - Build a lexicon of biological responses in space.
- Survey human and rodent model tissues relevant to space medicine.
 - Build a quartet of relationships between human vs. rodent cell cultures then correlate results in whole animals later in Station development.
 - Build reference standards for space medicine, radiation studies.
- Return value to the taxpayer.
 - Investigate cell, tissue, and small organism biology that offers the greatest benefits for terrestrial applications.
 - Implement an education program.

Harper/10/16/02

FSB *Transitions* Implements an Integrated, Multidisciplinary Approach that Encompasses All Levels of Biological Organization

Summary

Approach: Amplify the Value of the Payload

Space Biology Sample Return project:

- Preserve samples via "Fix or freeze" for postflight analyses and archiving.
- Apply latest technologies: Correlative genomics, proteomics, confocal imagery, 3+4D reconstruction
- Characterize the sequence of events in space adaptation: Collect data at multiple time courses
- Determine cause and effect relationships: preflight, inflight, postflight control strategies.
- Use all available platforms: Shuttle, Station, free-flyers
- Use all available hardware: Soda can, shoebox, microwave sized payloads
- Continue to amplify information: bioinformatics, computational biology, integrative studies, data mining, biospecimen sharing, reference standards, sample and data archiving.

Summary

Approaches that Increase Community Involvement

Space Biology Sample Return project:

- Baseline data collection on Earth and space via selected consortia
- NRAs targeted to available hardware and specific 5 year goals
- Develop a Minuteman type program to take advantage of unexpected opportunities: Soda can, shoebox, microwave sized payloads
- Develop a "Piggyback" program to make maximum use of vehicle resoruces.
- Preserve samples via "Fix or freeze" for postflight analyses and archiving.
- Continue to amplify information: bioinformatics, computational biology, integrative studies, data mining, biospecimen sharing, reference standards, sample and data archiving.

Summary NEXT STEPS 2003

- Develop Plan (in progress)
- Demonstrate Feasibility v
- Identify investigations in queue that contribute to focused goals
- Survey available hardware v
- Develop Baseline Data Collection Plan v
- Develop astronaut support (in progress)
- Solve the freezer, inflight imaging problem (in progress)
- Complete the bioinformatics framework (in progress)
- Release a focused NRA (in progress)
- Obtain manifest opportunities
- Procure selected flight units for baseline data collection
- Begin baseline data collection on model organisms
- Develop an "Astronaut Discovery Kit"

Summary Schedule

Space Biology Outcomes

- Reveal the molecular biology of the only life that we know in its first generations beyond the planet of origin.
- Document the biological history of life's transition to space.
- Develop the first lexicon for biological responses in space.
- Identify fundamental processes enabling or hindering human explorations beyond Earth.
- Add NASA's wing to the growing library of bio data on "public domain" organisms.
- Open vast new areas for biological discovery.
- Inspire applications in medicine and commerce.
- Provide fascinating and educational insights into the nature of life in the universe.

Space Biology Conclusion

The biotech revolution has also revolutionized space biology by amplifying the value of biosciences payloads orders of magnitude over what was possible just 5 years ago.

- The knowledge obtained is pioneering and foundational to science, human exploration, and Earth applications.
- Nobel Laureate Baruch Blumberg has agreed to lead the science effort. A community has been developed.
- Ames is ready to support all phases of the implementation.
- The budget is very small for the expected impact.

This program is ready for implementation.

